REPRODUCIBLE R_F VALUES IN THIN-LAYER ADSORPTION CHROMATOGRAPHY

M. S. J. DALLAS Unilever Research Laboratory, Welwyn, Herts. (Great Britain) (Received June 1st, 1964)

As commonly practised the technique of thin-layer adsorption chromatography is likely to give very variable results. For this reason many users hesitate to quote R_F values as they would in the case of paper chromatography. Though it is not essential for R_F values to be constant, there are many occasions when reproducibility is a distinct advantage.

The factors affecting R_F values in a given system have been investigated by many workers. TRUTER¹, STAHL² and RANDERATH³ have reviewed most of this work. Further investigations have been recently reported⁴⁻⁹. These studies, however, fail to account for a number of variations in R_F values experienced in this laboratory. The subject has therefore been re-examined, in order to develop a practical method of obtaining reproducible R_F values.

TABLE I

AZO COMPOUNDS USED IN THE INVESTIGATION

Abbreviation	Compound
AB	trans-Azobenzene
DAB	p-Dimethylamino-azobenzene*
S3	Sudan III (British Drug Houses Ltd., London)
AAB	p-Amino-azobenzene
нав	p-Hydroxy-azobenzene

* Also known as Dimethyl Yellow and as Butter Yellow.

This whole investigation has been carried out almost exclusively with one adsorbent-solute-solvent system; the adsorbent chosen was Kieselgel G (Merck*), since a standard product in common use was desirable; the solute was a mixture of well defined coloured azo-compounds (see Table I) and the solvent was benzene, which is readily available in a high state of purity. Since the work was begun, HONEGGER^{4,5} has published results with a very similar system, with which some comparisons can be made.

^{*} Unless otherwise stated, all results were obtained with one batch (No. T 61123).

PRINCIPAL FACTORS STUDIED

Three factors especially have been investigated by the author; these are:

(A) The activity of the adsorbent at the time of development and the effect on activity of the relative humidity of the atmosphere.

(B) The pre-adsorption of solvent vapour by the adsorbent before the liquid phase reaches it during development of the chromatogram.

(C) The variation in the ratio of the liquid to solid phase in the direction of the development.

There has been very little systematic study of these three factors reported in the literature. Recent studies by GEISS *et al.*^{7,10} on the effect of relative humidity on alumina-coated plates was not apparently extended to silica gel, but it was sufficient to show that the factor could be important where water-free solvent systems are used, as other workers^{4,11} have pointed out.

(A) Adsorbent activity and relative humidity

It is known that the activity of silica gel, like that of alumina, depends very much on its content of loosely bound water¹¹. In column chromatography a certain proportion of water is added to fully activated silica gel to obtain adsorbent of the required activity; this is clearly not practical in thin-layer chromatography.

It is not often realised that much of the activity, resulting from heating of a silica gel chromatoplate at 10°, is lost if subsequent spotting is carried out in the normal laboratory atmosphere.

We found that more than half the total amount of moisture adsorbed at equilibrium (in an atmosphere of about 50 % relative humidity) was taken up within about three minutes, and that even breathing on a plate during the spotting process could markedly affect R_F values. The effect of relative humidity was therefore carefully examined in this laboratory as a result of these initial findings.

With fully active plates we found that "tailing" of spots was considerable; this "tailing" is said by KLEIN¹² to be due to an increase in "site energy band width" with increase in activity of the silica. KLEIN found the chromatographic resolving power (on columns) to be optimum at a certain intermediate activity, and that the best way of achieving such activity was by equilibration of the gel with an atmosphere of a definite relative humidity; his findings are applicable to thin-layer chromatography.

With plates equilibrated at humidities much above 60% we observed that "tailing" again became noticeable; this could be due to the amount of water adsorbed being sufficient to fill many of the fine pores and thus to reduce seriously the available surface area of the gel. Over the range 15-58% humidity no significant variation in tailing was noticed in the particular system studied; on the other hand, there were considerable variations in both R_F values and relative R_F values (see Table II).

We have shown that strict control of the relative humidity, and hence of activity, greatly improves the reproducibility of R_F values. This control is achieved by equilibration of the chromatoplate with an atmosphere of constant relative humidity immediately before development in an S-chamber^{*}. The relative humidities above certain saturated salt solutions¹⁶ are sufficiently constant.

^{*} This was described by E. STAHL². Simple versions have recently been described by DAVIES¹³, WASICKY¹⁴ and JÄNCHEN¹⁵.

The results in Table II show how R_F values in benzene vary with the relative humidity. It is clear that precise control of humidity is necessary, if R_F values are to be reproducible to within \pm 0.01 units.

As the activity of the silica gel decreases the separating power decreases $(i.e R_F)$ values tend to become less different from one another). Hence relative R_F values should also show smaller differences from one another: see Table II. It is concluded that,

TABLE II

VARIATION OF R_F AND R_x VALUES WITH RELATIVE HUMIDITY

Substances, azo-compounds as in Table I; Kieselgel G (Merck), ca. 200 μ ; "AR" benzene, dried over CaSO₄; S-chamber; 10.0 cm; "overrun" 15 min; temperature of humidity chambers=20°; temperature during developments = 22 ± 2°. The above results are in most cases the mean of duplicate experiments.

Relative	Salt solution	$R_F V a$	ulues				$R_x V$	alues*			
humidity ¹⁶		AB	DAB S	53	AAB	HAB	AB	DAB	S3	AAB	HAB
o %		0.81	0-0.120	-0.05	0.05	0,04		100			
15%	LiCl · H _a O	0.90	0.47	0.25	0.13	0.07	191	100	53	27	15
32 %	CaCl _a •6H _a O	0.94	0.62	0.37	0.19	0.09	150	100	59	30	14
52 %	Na _o Cr _o O ₇ ·2H _o O	0.97	0.74	0.57	0.26	0.10	131	100	77	35	13
58 %	NaBr•2H,O	0.974	0.777	0.632	0.329	0.121	125	100	81.0	42.2	15.6
78 %	Na ₂ S ₂ O ₃ ·5H ₂ O	1.00	0.94	o.88	0.58	0.24	106	100	93	61	25
93 %	Na SO · IOHO	I.00	1.00	I.00	1.00	0.90	100	100	100	100	90
100 %	H ₂ O	1.00	1.00	1.00	1.00	1.00	100	100	100	100	100

* R_x values = R_F values relative to DAB = 100.

unless the activity is kept constant, there is little advantage in using "markers", provided that the solvent front can be accurately located.

The rate at which the layer of silica gel reaches equilibrium with the moisture of the ambient atmosphere will depend on its thickness, as HONEGGER⁵ has pointed out. No systematic study of the time required has yet been carried out. However, HONEGGER's figures suggest that 72 h are necessary for 3 mm layers; for normal 0.25 mm layers our results indicate that 16 h are quite sufficient. The equilibration of plates in constant humidity chambers can be undertaken before spotting (the method is described in the experimental section).

(B) Pre-adsorption of solvent vapour by adsorbent

It was found in this laboratory that the amount of benzene adsorbed by silica gel from air saturated with benzene vapour is a considerable proportion of that required to "wet" the gel. It follows that, if a chromatoplate is equilibrated with a saturated benzene atmosphere before development in liquid benzene, then R_F values should be lower than normal. This is because less mobile phase actually travels up the plate to wet it, part of the necessary benzene being already in the pores of the gel.

When chromatoplates were left in a benzene saturated atmosphere before development, in the manner described by WOLLISH *et al.*¹⁷ and by TRUTER¹, R_F values were found to be fairly reproducible, but were all lower than with development in an S-chamber (see Table III). It was also observed that the R_F values under the two conditions of development bore a nearly constant ratio to one another. The small

TABLE III

Compound	On pre-equi	librated plates*	Normal pla chamber**	Ratio of R_F values in the 2	
	R_F values	R_x values***	R _F values	R_x values	- systems8
DAB	0.500	100	0.712	100	0.702
S3	0.363	72	0.509	7 ¹	0.673
AAB	0.170	34	0.258	36	0.659
HAB	0.065	13	0.099	14	0.6 5 6

EFFECT OF PRE-EQUILIBRATION IN SOLVENT VAPOUR ON R_F VALUES Substances as in Table I; conditions as for Table II; but relative humidity ca. 47%.

* Mean of 4 experiments; see experimental section for description of the method.

** These R_F values are those estimated from values in Table II for silica gel of the same activity. The assumption is made that, if R_x values are the same, the activity of the silica is the same in the two systems. *** See Table II.

[§] The ratios of HONEGGER's⁵ results in his "SN" and "SK" tanks on 250μ layers of the same adsorbent (dried in air 72 h) are similar, 0.708 for Butter Yellow, 0.667 for Sudan Red G and 0.632 for Indophenol. His "SK" tank was similar to the "SN" (normal S-chamber) except that the tank was lined with filter paper soaked in benzene beforehand.

decrease in this ratio with decreasing R_F suggests that a little pre-adsorption of solvent vapour occurs in the S-chamber. With the solvent front moving more slowly as it rises up the plate, there will be more time in the higher regions of the layer for solvent vapour to diffuse ahead of the solvent front. Such a picture fits the observed results in Table III.

With an S-chamber the layer is not initially placed in contact with an atmosphere partly or wholly saturated with solvent vapour; moreover, the volume of the atmosphere in such a chamber is not large in comparison with the volume of adsorbent. Such conditions result in pre-adsorption of solvent vapour being at a minimum. Consequently, in this S-chamber R_F values are not only higher, but are also more reproducible and more nearly "absolute" than those obtained in ordinary tanks.

The adsorption of benzene vapour by a ~ 0.3 mm layer of silica gel under normal chromatographic conditions was measured (see experimental section). Approximately 50 % of the total benzene adsorbed at equilibrium was taken up within 30 min, which is of the same order of duration as a normal chromatogram. It is concluded that the average chromatogram in a simple rectangular tank is developed under conditions under which a variable amount of solvent vapour is being adsorbed by the gel layer. It is most probable that the upper surface of a layer will adsorb faster than the under surface and this fact could help in explaining some conflicting results in the literature with regard to the effect of layer thickness on R_F values.

(C) Ratio of liquid to solid phase on chromatoplates

It is normal practice to allow the solvent to ascend the chromatoplate freely and to remove the plate from the developing chamber after a certain time and before the solvent front reaches the top of the adsorbent layer. When a plate, during development in a hydrocarbon, is viewed by transmitted light it will be seen that the transparency falls off towards the solvent front. This effect has been shown to be due to a decreasing ratio of liquid to solid phase. It is equally apparent with horizontal as with vertical development.

A developed chromatogram was left in the solvent after the front had reached the top of the adsorbent film; two things were observed. Firstly, the transparency soon became uniform and, secondly, R_F values increased a little (see Table IV). The increase of R_F did not continue once the solvent distribution had become uniform over the plate, unless solvent was allowed to evaporate from the top of the plate. This way of leaving the plate in the solvent after the solvent front has reached the top of the layer will be referred to as "overrunning"; thus it might be said, for instance, that a given chromatogram was "overrun" 15 min.

TABLE IV

EFFECT OF "OVERRUNNING" ON R_F VALUES

Substances as in Table I; same conditions as for Table II, but plates equilibrated .:4 h over saturated NaBr \cdot 2H₂O at 20° before use.

Technique	Sol-	Total	R _F va	lues				$R_x va$	clues*			
	front (cm)	(min)	AB	DAB	S3	AAB	HAB	AB	DAB	S3	AAI	3 <i>HAB</i>
Normal	10.0	33	0.95	0.72	0.57	0.29	0.11	131	100	79	40	14
Overrun 15 min	10.0	47	0.975	0.775	0.625	0.325	0.11	125	100	80.5	42	15
Normal	13.1	47	0.95	0.71	0.57	0.30	0.10	134	100	79.5	42	14
Overrun 15 min	13.1	69	0.96	0.76	0.61	0.31	0.11	128	100	81	41	15

* See Table II.

This "overrunning" technique has the following advantages:

(a) R_F values across the plate become a little more constant; this makes comparisons with control substances more reliable.

(b) R_F values in single component solvents become independent of the distance from origin to solvent front (see Table IV).

(c) The distance from origin to solvent front is accurately pre-determined. This is important with mixed solvents where frontal analysis of the solvent occurs, resulting in a concentration gradient up the plate. (BRENNER *et al.*⁹ have pointed out that, for reproducible R_F values to be obtained under these conditions, the ratio

Distance from "immersion line" to origin Distance from "immersion line" to solvent front

must be constant.)

(d) The R_F values become more accurately comparable with retention volumes on columns. This follows from the constancy of the ratio of liquid to solid phase up the plate and consequently of the term A_L/A_S in the classical MARTIN AND SYNGE equations.

The time necessary for the ratio of liquid to solid phase to become constant may vary with solvent and distance of travel. (15 min were found to be enough for benzene moving 10 cm). The overrunning must not be extended unnecessarily, since diffusion of spots continues after the solvent has ceased advancing. A general disadvantage is seen in the fact that the time of development is increased with little, if any, gain in resolution.

This overrunning technique has been incorporated in the general chromatographic procedure employed in this work (see experimental section).

OTHER FACTORS AFFECTING R_F VALUES

In the light of the three main factors discussed above other better known factors were briefly examined:

Liquid-vapour equilibrium in solvent chamber

It is clear from the published literature^{2,4,9,15} why this is an important factor. Very good equilibrium is necessary, especially with volatile solvents, and with the Schamber this is rapidly obtained only where it is needed, *i.e.* in the immediate neighbourhood of the liquid phase on the adsorbent. Because of this and because of the minimum pre-adsorption of solvent vapour, as explained earlier, this type of developing vessel has been used throughout this work, except where it is stated otherwise.

Position of origin and distance of travel of solvent front

This has been included in the discussion of factor C above (see also Table IV).

Temperature

The R_F values at 11° were found to be lower than at 22° (see Table V). It was also noticed that the activity, as measured by relative R_F values, was a little greater at the lower temperature. The results suggest that control of temperature is necessary within a range of about two degrees, in the case of benzene.

TABLE V

EFFECT OF TEMPERATURE ON R_F values

Substances as in Table I; same conditions as for Table II, except for temperature; 2 experiments at each temperature.

Temperature	R_F val	ues				R_x va	ılues*			
	AB	DAB	S3	AAB	HAB	AB	DAB	S3	AAB	HAB
21.5°	0.975	0.77	0.62	0.325	0.12	126	100	80	41.5	15
$\frac{10.5^{\circ}}{\Delta R_F}/\Delta t$	0.975	0.745 0.0023	0.57 0.0045	0.275 0.0045	0.10 0.0018	130 	100	7 ⁶	36.5	13

* See Table II.

Layer thickness

This factor has been extensively studied by others. A small increase in R_F with increase of layer thickness over the range 0.25 to 1 mm was noted by PATAKI AND KELLER⁸, but confirmed by HONEGGER⁵ under certain conditions only. In the light of our present studies it seems that HONEGGER's results in the normal S-chamber ("SN" tank) on plates exposed to the atmosphere for 72 h before use are the most reliable; under these

particular conditions no variation of R_F with layer thickness over the range 0.25 to 3 mm was reported. We have found no variation over the range 0.1-0.5 mm in the few tests we have done here.

Amount of material spotted onto plate

No variation of R_F with amount of material applied was observed for up to only 10 μ g per component. With appreciably higher loads R_F values were found to increase a little.

Angle of plane of plate with vertical

The two angles, 10° and 90° to the vertical, were studied. With benzene the results were found to be identical. The time of development was also very similar in each case.

Nature of adsorbent

The structure and uniformity of silica gel will depend upon the method of preparation. The results quoted here, except those in TableVI, were all on one batch of Merck silica gel G. It was therefore pertinent to see if different batches of this adsorbent would

TABLE VI

RESULTS WITH DIFFERENT BATCHES OF KIESELGEL G. (MERCK)

Substances as in Table I; conditions as for Table II, but relative humidity = 58% in each case (24 h over saturated NaBr·2H₂O); temperature = $22 \pm 1^{\circ}$. Results for batch T 61123 taken from Table VII. Results for batches T 63272 and 387435 were the averages from 2 experiments.

	Т б1123		T 63272		387435	
	$\overline{R_F}$	R_x	R_F	R_x	R_F	R_x
AB	0.974	124.7	0.980	130.5	0.985	123.5
DAB	0.777	100	0.750	100	0.795	100
S3	0.632	81.o	0.590	78	0.66 <u>5</u>	83
AAB	0.329	42.2	0.315	41.5	0.355	44.5
HAB	0.121	15.6	0.125	16.5	0.135	16.5
Time for 10 cm solvent travel*	33 min		20 min		18 min	

* Without "overrunning" time.

give similar results. Three different batches were examined by the general procedure described here. Fairly small differences in R_F and relative R_F values were observed (see Table VI). A large variation in time of development was, however, noted; this is due to particle size differences. Thus it is clear that the manufacture of silica gel for thin layer chromatography must be carefully standardised, before R_F values can be quoted with real confidence.

STANDARD DEVIATION RESULTS

Table VII gives the results of R_F measurements on 10 chromatograms on one batch of adsorbent. The general procedure described in the experimental section was used; this procedure is designed to minimise the effect of all the variable factors discussed in this report.

TABLE VII

REPRODUCIBILITY OF R_F VALUES IN 10 EXPERIMENTS

Substances as in Table I; same conditions as for Table II, but relative humidity = 58% in each case; temperature = $22 \pm 2^{\circ}$.

	AB	DAB	S3	AAB	HAB
Mean R_F value	0.974	0.777	0.632	0.329	0.121
Maximum value	0.98	0.79	0.65	0.35	0.14
Minimum value	0,96	0.76	0.62	0.30	0.10
Mid range	0.970	0.775	0.635	0.325	0.120
Standard deviation	0.006	0.010	0,010	0.016	0.013
Mean R_x value*	124.7	100	81.0	42.2	15.6 Ĭ

* See Table II.

The standard deviation (estimated from the range) lay within the limits 0.006 (for $R_F = 0.97$) and 0.016 (for $R_F = 0.33$). It was greater for spots of intermediate R_F value. The temperature variation $(\pm 2^{\circ})$ will account for some of the deviation.

MULTIPLE DEVELOPMENT

Table VIII gives the results of an experiment on double development in one direction. The theoretical R_F values in column 3 were obtained from those in column 1 (1st development) using the equation of STARKA AND HAMPL¹⁸:

 $R_{F_2} = 2 R_{F_1} - R_{F_1}^2$.

The general procedure (see experimental section) was used, and between developments the plate was dried in an oven, and then replaced in the constant humidity tank for 24 h. There was good agreement between experiment and theory.

TABLE VIII

MULTIPLE DEVELOPMENT IN A SINGLE SOLVENT

Substances as in Table 1; conditions as for Table II, but relative humidity = 58% in each case (24 h over saturated NaBr·2H₂O). One experiment.

Substance	R _F value							
•	Ist development	2nd development	Calculated					
AB	0.97	I.00	0.999					
DAB	0.78	0.95	0.950					
S3	0.62	0.86	0.855					
AAB	0.32	0.54	0.537					
HAB	0.12	0.22	0.221					

PREDICTION OF RETENTION VOLUMES ON COLUMNS

When it is necessary to separate macro amounts of material, it is clearly useful to be able to scale up thin-layer chromatograms on to columns. The prediction of retention

J. Chromatog., 17 (1965) 267-277

274

volumes on columns, from thin-layer results, will in the first place require accurate R_F values. These values must not only be reproducible, but must also be obtained under conditions that strictly correspond with those in column chromatography. The procedure described here should make it possible to obtain the absolute R_F values required.

A study of the exact relationship between thin-layer R_F values and retention volumes on columns of similar adsorbent is now being undertaken here.

EXPERIMENTAL

A simple method of obtaining plates of reproducible activity was designed. The use of the S-chamber is essential in order to minimise changes of activity of the layer during the development of the chromatogram (e.g. by gain by the layer of moisture from the atmosphere of the tank or vice versa). The use of the S-chamber also minimises pre-adsorption of solvent vapour by the layer. Great care must be taken to keep the activity of the plate unchanged after removal of the plate from the constant humidity chamber.

General procedure for obtaining reproducible R_F values

The plates were coated with a layer of Kieselgel G (Merck) approx. 200 μ thick, using a mechanical spreader (Desaga) in the manner described by STAHL². The plates were left to dry in a clean moderately dry atmosphere overnight or longer, and were then prepared for use in the S-chamber by removal of margins of the layer from three sides. The margins were of such width that the three spacing strips of the S-chamber* were separated by several millimeters from the edges of the adsorbent layer. A transverse channel several millimeters wide was also cut from the layer to prevent the solvent front moving beyond this position. Such plates were then left for at least 15 h in a constant humidity vessel maintained at 20°. This vessel was a normal solvent tank (about $7 \times 23 \times 23$ cm), lined with thick filter paper and containing about 50 ml of a saturated aqueous solution of sodium bromide (various saturated salt solutions¹⁶ may be used to obtain different relative humidities, but particularly satisfactory results were obtained with NaBr, which gives 58 % relative humidity, see Table II). Several short lengths of glass tubing in the bottom of the vessel served to keep the plates above the level of the salt solution. For spotting on of the substances a plate was removed from the constant humidity chamber and all adsorbent above the origin immediately covered by a clean glass plate in close contact with the layer. When spotting was complete, the temporary glass cover was quickly replaced by the Schamber cover plate and the chromatogram immediately developed in the solvent concerned (preferably at 20 \pm 1°). The time the solvent reached the top of the layer was noted and the plate left for a further 15 min in the solvent. After development in this way the plate was laid flat and the coverplate removed to allow the solvent to evaporate evenly from the layer.

^{*} The S-chamber used throughout this work was similar to that of $DAVIES^{14}$, but, in place of a single piece of glass rod as spacer, three strips of glass, approx. 1.5 \times 10 mm in cross-section, were employed. These were stuck to a 20 \times 20 cm piece of glass by means of epoxy-resin and ground flat to give a good seal on three sides, when placed over the coated plate.

Pre-equilibration of a plate in solvent vapour

The plate was prepared, spotted and placed in an ordinary tank fitted with a good lid, through which passed the stem of a tap funnel reaching the bottom centre of the tank (see Fig. 1). The tank was lined with thick filter paper and about 25 ml of solvent placed in it: the plate was kept above the level of the solvent by means of a small platform. After 24 h about 100 ml more solvent were added from the funnel to develop the chromatogram without disturbing the equilibrium.

Method of horizontal development

The general procedure, as described above, was used, but development was in a horizontal tank similar to that described by BRENNER *et al.*¹⁹ Great care was taken to reduce solvent vapour loss to a minimum.

Measurement of adsorption of benzene vapour by silica gel

The inside of a wide-neck 100 ml flask was coated with a layer of Kieselgel G ca. 0.3 mm thick. The gel was activated I h at 110° and weighed *in situ*. The coated flask was placed inside a tank with a saturated benzene atmosphere for a specified time, then re-stoppered and re-weighed. The uptake of benzene was found to reach a maximum of 0.595 ml per g at 20° after about 24 h. This figure is slightly greater than that

Fig. 1. Tank for pre-equilibration of plate in solvent vapour before development.

J. Chromatog., 17 (1965) 267-277

for the "total pore volume", 0.54 ml per g, obtained by the direct titration method of MOTTLAU AND FISHER²⁰. The small difference could be due to more complete filling of the narrower pores in this vapour adsorption method.

ACKNOWLEDGEMENTS

The assistance of Mr. J. B. PICKUP with the experimental work is gratefully acknowledged.

SUMMARY

The factors affecting the reproducibility of R_F values in adsorption chromatography on thin layers of a given silica gel have been examined. It has been shown that the important factors are method of development and adsorbent activity, which is controlled by ambient relative humidity. Distance of solvent travel and temperature have a moderate effect. Layer thickness and angle of plane of plates appear to have little effect.

A procedure is described for obtaining reproducible R_F values and "absolute" R_F values.

REFERENCES

- 1 E. V. TRUTER, Thin Film Chromatography, Cleaver-Hume Press, London, 1963.
- 2 E. STAHL, Dünnschicht-Chromatographie, Springer-Verlag, Berlin, 1962.
- 3 K. RANDERATH, Dünnschicht-Chromatographie, Verlag Chemie, Weinheim, 1962.
- 4 C. G. HONEGGER, Helv. Chim. Acta, 46 (1963) 1730.
- 5 C. G. HONEGGER, Helv. Chim. Acta, 46 (1963) 1772.

- 6 J. KELEMAN AND G. PATAKI, Z. Anal. Chem., 195 (1963) 81.
 7 F. GEISS AND H. SCHLITT, Naturwissenschaften, 50 (1963) 350.
 8 G. PATAKI AND M. KELLER, Helv. Chim. Acta, 46 (1963) 1054.
 9 M. BRENNER, A. NIEDERWIESER, G. PATAKI AND A. R. FAHMY, Experientia, 18 (1962) 101.
- 10 F. GEISS, H. SCHLITT, F. J. RITTER AND W. M. WEIMAR, J. Chromatog., 12 (1963) 469.
- 11 R. HERNANDEZ, R. HERNANDEZ Jr. AND L. R. AXELROD, Anal. Chem., 33 (1961) 370.
- 12 P. D. KLEIN, Anal. Chem., 34 (1962) 733.

- 13 B. H. DAVIES, J. Chromatog., 10 (1963) 518.
 14 R. WASICKY, Naturwissenschaften, 50 (1963) 569.
 15 D. JÄNCHEN, J. Chromatog., 14 (1964) 261.
 16 Handbook of Chemistry and Physics, Chemical Rubber Publishing Co., Cleveland, Ohio, U.S.A., 1962, p. 2595.
- 17 E. G. WOLLISH, M. SCHMALL AND H. HAWRYLYSHYN, Anal. Chem., 33 (1961) 1138.
- 18 L. STARKA AND R. HAMPL, J. Chromatog., 12 (1963) 347.
- 19 M. BRENNER AND A. NIEDERWIESER, Experientia, 17 (1961) 237.
- 20 A. Y. MOTTLAU AND N. E. FISHER, Anal. Chem., 34 (1962) 714.

J. Chromatog., 17 (1965) 267-277